PKC-δ-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase

Author:

Talior Ilana,Tennenbaum Tamar,Kuroki Toshio,Eldar-Finkelman Hagit

Abstract

Oxidative stress is thought to be one of the causative factors contributing to insulin resistance and type 2 diabetes. Previously, we showed that reactive oxygen species (ROS) production is significantly increased in adipocytes from high-fat diet-induced obese and insulin-resistant mice (HF). ROS production was also associated with the increased activity of PKC-δ. In the present studies, we hypothesized that PKC-δ contributes to ROS generation and determined their intracellular source. NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) reduced ROS levels by 50% in HF adipocytes, and inhibitors of NO synthase (l-NAME, 1 mM), xanthine oxidase (allopurinol, 100 μM), AGE formation (aminoguanidine, 10 μM), or the mitochondrial uncoupler (FCCP, 10 μM) had no effect. Rottlerin, a selective PKC-δ inhibitor, suppressed ROS levels by ∼50%. However, neither GÖ-6976 nor LY-333531, effective inhibitors toward conventional PKC or PKC-β, respectively, significantly altered ROS levels in HF adipocytes. Subsequently, adenoviral-mediated expression of wild-type PKC-δ or its dominant negative mutant (DN-PKC-δ) in HF adipocytes resulted in either a twofold increase in ROS levels or their suppression by 20%, respectively. In addition, both ROS levels and PKC-δ activity were sharply reduced by glucose depletion. Taken together, these results suggest that PKC-δ is responsible for elevated intracellular ROS production in HF adipocytes, and this is mediated by high glucose and NADPH oxidase.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3