Osmoregulation of vasopressin release and gene transcription under acute and chronic hypovolemia in rats

Author:

Kondo Noriko1,Arima Hiroshi1,Banno Ryouichi1,Kuwahara Shinobu1,Sato Ikuko1,Oiso Yutaka1

Affiliation:

1. Department of Metabolic Diseases, Field of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan

Abstract

Although acute decreases in plasma volume are known to enhance the osmotically induced arginine vasopressin (AVP) release, it is unclear whether there is also such interaction at the level of gene transcription. It also remains to be established how sustained changes in plasma volume affect the osmoregulation. In this study, we examined how acute and chronic decreases in blood volume affected the osmoregulation of AVP release and gene transcription in rats. Acute hypovolemia was induced by intraperitoneal injection of polyethylene glycol (PEG), and chronic hypovolemia was induced by 3 days of water deprivation (WD) or 12 days of salt loading (SL). Rats were injected with isotonic or hypertonic saline, and plasma AVP levels and AVP heteronuclear (hn)RNA expression in the supraoptic and paraventricular nuclei, an indicator of gene transcription, were examined in relation to plasma osmolality in each group. Plasma AVP levels were correlated with plasma Na levels in all groups. Whereas the regression lines relating plasma AVP to Na were almost identical among control, WD, and SL groups, the thresholds of plasma Na for AVP release were significantly decreased only in the PEG group. AVP hnRNA levels were also correlated with plasma Na levels in control and PEG groups, and the thresholds were significantly decreased in the PEG group. In contrast, there was no significant correlation of AVP hnRNA and plasma Na levels in WD and SL groups. Thus it was demonstrated that acute and chronic reduction in plasma volume affected the osmoregulation of AVP release and gene transcription in different ways.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3