Affiliation:
1. Department of Metabolic Diseases, Field of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
Abstract
Although acute decreases in plasma volume are known to enhance the osmotically induced arginine vasopressin (AVP) release, it is unclear whether there is also such interaction at the level of gene transcription. It also remains to be established how sustained changes in plasma volume affect the osmoregulation. In this study, we examined how acute and chronic decreases in blood volume affected the osmoregulation of AVP release and gene transcription in rats. Acute hypovolemia was induced by intraperitoneal injection of polyethylene glycol (PEG), and chronic hypovolemia was induced by 3 days of water deprivation (WD) or 12 days of salt loading (SL). Rats were injected with isotonic or hypertonic saline, and plasma AVP levels and AVP heteronuclear (hn)RNA expression in the supraoptic and paraventricular nuclei, an indicator of gene transcription, were examined in relation to plasma osmolality in each group. Plasma AVP levels were correlated with plasma Na levels in all groups. Whereas the regression lines relating plasma AVP to Na were almost identical among control, WD, and SL groups, the thresholds of plasma Na for AVP release were significantly decreased only in the PEG group. AVP hnRNA levels were also correlated with plasma Na levels in control and PEG groups, and the thresholds were significantly decreased in the PEG group. In contrast, there was no significant correlation of AVP hnRNA and plasma Na levels in WD and SL groups. Thus it was demonstrated that acute and chronic reduction in plasma volume affected the osmoregulation of AVP release and gene transcription in different ways.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献