Dynamic alteration of adiponectin/adiponectin receptor expression and its impact on myocardial ischemia/reperfusion in type 1 diabetic mice

Author:

Ma Yanzhuo1,Liu Yi1,Liu Shaowei1,Qu Yan2,Wang Rutao1,Xia Chenhai1,Pei Haifeng1,Lian Kun1,Yin Tao1,Lu Xiaoyan1,Sun Lu1,Yang Lu1,Cao Yanjie1,Lau Wayne Bond3,Gao Erhe4,Wang Haichang1,Tao Ling1

Affiliation:

1. Departments of 1Cardiology and

2. Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; and

3. Department of Emergency Medicine and

4. Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania

Abstract

The present study determined the dynamic change of adiponectin (APN, a cardioprotective adipokine), its receptor expression, and their impact upon myocardial ischemia/reperfusion (MI/R) injury during type 1 diabetes mellitus (T1DM) progression, and involved underlying mechanisms. Diabetic state was induced in mice via multiple intraperitoneal injections of low-dose streptozotocin. The dynamic change of plasma APN concentration and cardiac APN receptor-1 and -2 (AdipoR1/2) expression were assessed immediately after diabetes onset (0 wk) and 1, 3, 5, and 7 wk thereafter. Indicators of MI/R injury (infarct size, apoptosis, and LDH release) were determined at 0, 1, and 7 wk of DM duration. The effect of APN on MI/R injury was determined in mice subjected to different diabetic durations. Plasma APN levels (total and HMW form) increased, whereas cardiac AdipoR1 expression decreased early after T1DM onset. With T1DM progression, APN levels were reduced and cardiac AdipoR1 expression increased. MI/R injury was exacerbated with T1DM progression in a time-dependent manner. Administration of globular APN (gAD) failed to attenuate MI/R injury in 1-wk T1DM mice, while an AMP-activated protein kinase (AMPK) activator (AICAR) reduced MI/R injury. However, administration of gAD (and AICAR) reduced infarct size and cardiomyocyte apoptosis in 7-wk T1DM mice. In conclusion, our results demonstrate a dynamic dysfunction of APN/AdipoR1 during T1DM progression. Reduced cardiac AdipoR1 expression and APN concentration may be responsible for increased I/R injury susceptibility at early and late T1DM stages, respectively. Interventions bolstering AdipoR1 expression during early T1DM stages and APN supplementation during advanced T1DM stages may potentially reduce the myocardial ischemic injury in diabetic patients.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3