Insulin release, cGMP, cAMP, and membrane potential in acetylcholine-stimulated islets.

Author:

Gagerman E,Idahl L A,Meissner H P,T�ljedal I B

Abstract

Acetylcholine potentiated the glucose-induced insulin release from microdissected mouse islets of Langerhans but had no effect on basal insulin release. Significant potentiation was obtained with 0.1 micron acetylcholine in the presence of 10 micron eserine and with 1 micron or more acetylcholine in the absence of a choline esterase inhibitor. Carbamylcholine, too, potentiated insulin release. Potentiation was blocked by methylatropine, whereas methylatropine alone had no effect on insulin release. Acetylcholine or carbamylcholine (5-500 micron) had no obvious effect on cyclic GMP or cyclic AMP in the islets. In the presence of 11.1 mM D-glucose, the membrane potential of beta-cells oscillated slowly between a polarized silent state of -50 to -55 mV and a depolarized active state of -33 to -39 mV, at which a fast spike activity occurred. Acetylcholine made the potential stay at the plateau and induced a continuous spike activity pattern. Atropine inhibited the electrical effects of acetylcholine but not those of glucose alone. It is suggested that cholinergic potentiation of insulin release is mediated by changes of transmembrane ionic fluxes, probably without the intervention of cyclic GMP or cyclic AMP.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3