Quantitative analysis of acetoacetate metabolism in AS-30D hepatoma cells with 13C and 14C isotopic techniques

Author:

Holleran A. L.1,Fiskum G.1,Kelleher J. K.1

Affiliation:

1. Department of Physiology, George Washington University School ofMedicine and Health Sciences, Washington, District of Columbia 20037,USA.

Abstract

Experimental hepatoma cells utilize acetoacetate as an oxidative energy source and as a precursor for lipid synthesis. The significance of ketone body metabolism in tumors lies in the study of tumor-host metabolism and the ketoneMic condition that is often present in cancer patients. The quantitative importance of acetoacetate and glucose was investigated in AS-30D cells with use of 13C and 14C isotopic methods. In addition, the effects of acetoacetate were compared with those of dichloroacetic acid (DCA), an activator of pyruvate dehydrogenase (PDH). The 14CO2 ratio method evaluated the entry of pyruvate into the tricarboxylic acid (TCA) cycle and revealed that acetoacetate diverted pyruvate from PDH to pyruvate carboxylation. In contrast, DCA increased the oxidation of glucose largely through PDH, indicating that PDH is not maximally active in the absence of DCA. Isotopomer spectral analysis of lipid synthesis demonstrated that, in the absence of acetoacetate, glucose supplied 65% of the acetyl-CoA used for de novo lipogenesis. When 5 mM acetoacetate was included in the incubation, glucose was displaced as a lipogenic precursor and acetoacetate supplied 85% of the acetyl-CoA for lipogenesis vs. only 2% for glucose. Thus AS-30D cells have a large capacity for acetoacetate utilization for de novo lipogenesis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3