Agouti regulation of intracellular calcium: role of melanocortin receptors

Author:

Kim J. H.1,Kiefer L. L.1,Woychik R. P.1,Wilkison W. O.1,Truesdale A.1,Ittoop O.1,Willard D.1,Nichols J.1,Zemel M. B.1

Affiliation:

1. Department of Nutrition and Physiology Program, University ofTennessee, Knoxville 37996-1900, USA.

Abstract

Several dominant mutations at the murine agouti locus cause a syndrome of marked obesity and insulin resistance. We have recently reported that intracellular free Ca2+ concentration ([Ca2+]i) is elevated in viable yellow mice. Because [Ca2+]i has a key role in the pathogenesis of insulin resistance, obesity, and hypertension, the role of the purified agouti gene product in regulating [Ca2+]i was evaluated in a number of cell types. Purified murine agouti induced slow, sustained increases in [Ca2+]i in A7r5 vascular smooth muscle cells and 3T3-L1 adipocytes in a dose-dependent fashion. In L6 skeletal myocytes, agouti stimulated an increase in [Ca2+]i with an apparent concentration eliciting 50% of the maximal response (EC50) of 62 nM. This response was substantially inhibited by Ca2+ entry blockade with nitrendipine. To determine whether melanocortin receptors play a role in agouti regulation of [Ca2+]i, we examined the effect of melanocortin peptides and agouti in cells stably transfected with human melanocortin receptors. Human embryonic kidney cells (HEK-293 cells) transfected with either the human melanocortin 1 receptor (MC1R) or melanocortin 3 receptor responded to human agouti with slow, sustained increases in [Ca2+]i, whereas nontransfected HEK-293 cells with no melanocortin receptors did not respond to agouti. Dose-response curves in the MC1R line showed that agouti had an EC50 of 18 nM, which is comparable to that for agouti antagonism of (125)I-Nle,D-Phe-alpha-melanocyte-stimulating hormone binding in the same cell line. This direct effect of agouti on stimulating increases in [Ca2+]i suggests a potential mechanism for agouti-induced insulin resistance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3