Renal assimilation of oligopeptides: physiological mechanisms and metabolic importance

Author:

Adibi S. A.1

Affiliation:

1. Clinical Nutrition Research Unit, University of Pittsburgh School ofMedicine, Pennsylvania 15213, USA.

Abstract

Assimilation of systemic oligopeptides (di- and tripeptides) is largely a function of kidneys. The most specific and unique mechanism utilized for the performance of this renal function is transport, followed by intracellular hydrolysis and then release of constituent amino acids to the systemic circulation. Among tissues examined (liver, kidney, intestine, and muscle), kidney is the only tissue capable of accumulating dipeptides in concentrations that are greater than their plasma concentrations. Kidney also is the tissue with the highest cytoplasmic dipeptidase activity. Intracellular accumulation is mediated by two transporters (Pept-1 and Pept-2), both of which have been recently cloned. These transporters use dipeptides and tripeptides as substrates and rely on protons and membrane potential for their driving force. Pept-1 is a low-affinity, high-capacity transporter, and Pept-2 is a high-affinity, low-capacity transporter. The nutritional and metabolic regulation of renal assimilation of oligopeptides is suggested by the selective decrease in dipeptide balance across the kidneys of starved human subjects and by the insulin stimulation of dipeptide transport by a renal cell line. Peptiduria has been observed in a variety of diseases, but the mechanism, except in genetic diseases affecting hydrolysis of oligopeptides, is not known. Finally, the capacity for active transport of oligopeptides and peptidomimetic drugs enables kidneys to play major roles in nutritional and pharmacological therapies.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3