Loss of CTRP4 alters adiposity and food intake behaviors in obese mice

Author:

Sarver Dylan C.12,Stewart Ashley N.12,Rodriguez Susana12,Little Hannah C.12,Aja Susan23,Wong G. William12

Affiliation:

1. Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland

2. Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland

3. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

Central and peripheral mechanisms are both required for proper control of energy homeostasis. Among circulating plasma proteins, C1q/TNF-related proteins (CTRPs) have recently emerged as important regulators of sugar and fat metabolism. CTRP4, expressed in brain and adipose tissue, is unique among the family members in having two tandem globular C1q domains. We previously showed that central administration of recombinant CTRP4 suppresses food intake, suggesting a central nervous system role in regulating ingestive physiology. Whether this effect is pharmacological or physiological remains unclear. We used a loss-of-function knockout (KO) mouse model to clarify the physiological role of CTRP4. Under basal conditions, CTRP4 deficiency increased serum cholesterol levels and impaired glucose tolerance in male but not female mice fed a control low-fat diet. When challenged with a high-fat diet, male and female KO mice responded differently to weight gain and had different food intake patterns. On an obesogenic diet, male KO mice had similar weight gain as wild-type littermates. When fed ad libitum, KO male mice had greater meal number, shorter intermeal interval, and reduced satiety ratio. Female KO mice, in contrast, had lower body weight and adiposity. In the refeeding period following food deprivation, female KO mice had significantly higher food intake due to longer meal duration and reduced satiety ratio. Collectively, our data provide genetic evidence for a sex-dependent physiological role of CTRP4 in modulating food intake patterns and systemic energy metabolism.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

The American Diabetes Association Research Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3