Affiliation:
1. Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University;
2. Department of Gastroenterology and Hepatology and
3. Department of Preventive Medicine for Health Science, Kyoto Prefectural University of Medicine; and
4. Department of Medical Life Systems, Doshisha University, Kyoto, Japan
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs involved in posttranscriptional gene regulation that have been shown to be involved in growth, development, function, and stress responses of various organs. The purpose of this study was to identify the miRNA response to physical activity, which was related to functions such as nutrient metabolism, although the miRNAs involved are currently unknown. C57BL/6 mice were divided into exercise and control groups. The exercise group performed running exercise, with a gradual increase of the load over 4 wk. On the other hand, to examine the effect of muscle inactivity, the unilateral hindlimbs of other mice were fixed in a cast for 5 days. Microarray analysis for miRNA in gastrocnemius revealed that miR-696 was markedly affected by both exercise and immobilization, showing opposite responses to these two interventions. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which was increased by exercise and decreased by immobilization in the protein level, was predicted as a target regulated by miR-696. In cultured myocytes, intracellular miR-696 variation led to negative regulation of PGC-1α protein along with the expression of mRNAs for downstream genes. In addition, we found decreases in the biogenesis of mitochondria and fatty acid oxidation in miR-696-overexpressing myocytes compared with normal control myocytes. These observations demonstrate that miR-696 is a physical activity-dependent miRNA involved in the translational regulation of PGC-1α and skeletal muscle metabolism in mice.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
169 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献