Insulin binding and effects in isolated soleus muscle of lean and obese mice.

Author:

Le Marchand-Brustel Y,Jeanrenaud B,Freychet P

Abstract

To get some insight into the mechanisms of insulin resistance in obesity, insulin binding and biological effects were investigated in soleus muscles isolated from normal and obese mice. Basal and insulin-stimulated 2-deoxyglucose uptake were measured at the steady state of insulin binding. The results were consistent with the concept of spare receptors, i.e., maximal insulin effect was achieved when only about 20% of total receptors was occupied. When similar studies were applied to muscles of gold thioglucose obese or genetically obese (ob/ob) mice, and compared to lean controls: a) insulin binding was decreased; b) the insulin dose-response curve of 2-deoxyglucose uptake was shifted to the right; c) maximally insulin-stimulated 2-deoxyglucose uptake, glycolysis, and glycogen synthesis were markedly decreased. Insulin binding and effects returned toward normal after a 40-h fast in obese mice. These results point to two loci for the insulin resistance of skeletal muscle in obesity: 1) a decrease in the number of insulin receptors, which results in a diminished insulin sensitivity; and 2) one or more alterations beyond receptor that are responsible for the decreased responsiveness of the tissue to insulin and appear to play a major role in the insulin resistance of muscle in obesity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3