Affiliation:
1. ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
Abstract
Recently, we created a unique gain-of-function mouse model with Sertoli cell-specific transgenic androgen receptor expression (TgSCAR) showing that SCAR activity controls the synchronized postnatal development of somatic Sertoli and Leydig cells and meiotic-postmeiotic germ cells. Moderate TgSCAR (TgSCARm) expression reduced testis size but had no effect on male fertility. Here, we reveal that higher TgSCAR expression (TgSCARH) causes male infertility. Higher SCAR activity, shown by upregulated AR-dependent transcripts ( Rhox5, Spinw1), resulted in smaller adult TgSCARH testes (50% of normal) despite normal or elevated circulating and intratesticular testosterone levels. Unlike fertile TgSCARm males, testes of adult TgSCARH males exhibited focal regions of interstitial hypertrophy featuring immature adult Leydig cells and higher intratesticular dihydrotestosterone and 5α-androstane 3α,17β-diol levels that are normally associated with pubertal development. Mature TgSCARH testes also exhibited markedly reduced Sertoli cell numbers (70%), although meiotic and postmeiotic germ cell/Sertoli cell ratios were twofold higher than normal, suggesting that elevated TgSCAR activity supports excessive spermatogenic development. Concurrent with the higher germ cell load of TgSCARH Sertoli cells were increased levels of apoptotic germ cells in TgSCARH relative to TgSCARm testes. In addition, TgSCARH testes displayed unique morphological degeneration that featured accumulated cellular and spermatozoa clusters in dilated channels of rete testes, consistent with reduced epididymal sperm numbers. Our findings reveal for the first time that excessive Sertoli cell AR activity in mature testes can reach a level that disturbs Sertoli/germ cell homeostasis, impacts focal Leydig cell function, reduces sperm output, and disrupts male fertility.
Funder
Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献