Elevated expression of the Sertoli cell androgen receptor disrupts male fertility

Author:

Hazra Rasmani1,Upton Dannielle1,Desai Reena1,Noori Omar1,Jimenez Mark1,Handelsman David J.1,Allan Charles M.1

Affiliation:

1. ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia

Abstract

Recently, we created a unique gain-of-function mouse model with Sertoli cell-specific transgenic androgen receptor expression (TgSCAR) showing that SCAR activity controls the synchronized postnatal development of somatic Sertoli and Leydig cells and meiotic-postmeiotic germ cells. Moderate TgSCAR (TgSCARm) expression reduced testis size but had no effect on male fertility. Here, we reveal that higher TgSCAR expression (TgSCARH) causes male infertility. Higher SCAR activity, shown by upregulated AR-dependent transcripts ( Rhox5, Spinw1), resulted in smaller adult TgSCARH testes (50% of normal) despite normal or elevated circulating and intratesticular testosterone levels. Unlike fertile TgSCARm males, testes of adult TgSCARH males exhibited focal regions of interstitial hypertrophy featuring immature adult Leydig cells and higher intratesticular dihydrotestosterone and 5α-androstane 3α,17β-diol levels that are normally associated with pubertal development. Mature TgSCARH testes also exhibited markedly reduced Sertoli cell numbers (70%), although meiotic and postmeiotic germ cell/Sertoli cell ratios were twofold higher than normal, suggesting that elevated TgSCAR activity supports excessive spermatogenic development. Concurrent with the higher germ cell load of TgSCARH Sertoli cells were increased levels of apoptotic germ cells in TgSCARH relative to TgSCARm testes. In addition, TgSCARH testes displayed unique morphological degeneration that featured accumulated cellular and spermatozoa clusters in dilated channels of rete testes, consistent with reduced epididymal sperm numbers. Our findings reveal for the first time that excessive Sertoli cell AR activity in mature testes can reach a level that disturbs Sertoli/germ cell homeostasis, impacts focal Leydig cell function, reduces sperm output, and disrupts male fertility.

Funder

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3