Affiliation:
1. Department of Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; and
2. Department of Medicine, University of Toronto, Toronto, Ontario, Canada
Abstract
Cells exposed to high glucose may undergo hypertrophy, proliferation, and apoptosis, but the role of hexosamine flux in mediating these effects has not been fully elucidated. Accordingly, we studied the effects of glucose and glucosamine on rat glomerular mesangial cells (MC) turnover. Compared with physiological glucose (5.6 mM), treatment with high glucose (25 mM) for 24 h stimulated MC proliferation, an effect that was mimicked by exposure to low concentrations of glucosamine (0.05 mM). The percentage of cells in G0/G1phase of the cell cycle was reduced with a concomitant increase of the number of cells in G2/M phase. Proliferating cell nuclear antigen, phosphorylated mammalian target of rapamycin [phospho-mTOR (Ser2448)], and total regulatory-associated protein of mTOR were increased by high glucose and glucosamine treatment. Inhibition of glutamine:fructose-6-phosphate amidotransferase (GFAT), the rate-limiting enzyme for hexosamine flux, with 6-diazo-5-oxonorleucine (10 μM) and of mTOR with rapamycin both attenuated glucose-mediated MC proliferation. Higher glucosamine concentrations (0.25–10 mM) caused MC apoptosis after 48 h, and, in addition, GFAT overexpression also increased MC apoptosis (TdT-dUTP nick end-labeling-positive cells: 3.8 ± 0.3 vs. 1.1 ± 0.2% for empty vector; P < 0.05). Hence, hexosamine flux is an important determinant of MC proliferation and apoptosis. The proliferative response to high glucose and hexosamine flux is rapamycin-sensitive, suggesting that this effect is associated with signaling through rapamycin-sensitive mTOR complex 1 (mTORC1).
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献