Stimulation of insulin secretion and associated nuclear accumulation of iPLA2β in INS-1 insulinoma cells

Author:

Ma Zhongmin1,Zhang Sheng2,Turk John2,Ramanadham Sasanka2

Affiliation:

1. Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, New York, New York 10029; and

2. Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

Accumulating evidence suggests that the cytosolic calcium-independent phospholipase A2 (iPLA2β) manifests a signaling role in insulin-secreting (INS-1) β-cells. Earlier, we reported that insulin-secretory responses to cAMP-elevating agents are amplified in iPLA2β-overexpressing INS-1 cells (Ma Z, Ramanadham S, Bohrer A, Wohltmann M, Zhang S, and Turk J. J Biol Chem276: 13198–13208, 2001). Here, immunofluorescence, immunoaffinity, and enzymatic activity analyses are used to examine distribution of iPLA2β in stimulated INS-1 cells in greater detail. Overexpression of iPLA2β in INS-1 cells leads to increased accumulation of iPLA2β in the nuclear fraction. Increasing glucose concentrations alone results in modest increases in insulin secretion, relative to parental cells, and in nuclear accumulation of the iPLA2β protein. In contrast, cAMP-elevating agents induce robust increases in insulin secretion and in time-dependent nuclear accumulation of iPLA2β fluorescence, which is reflected by increases in nuclear iPLA2β protein content and specific enzymatic activity. The stimulated effects are significantly attenuated in the presence of cell-permeable inhibitors of protein phosphorylation and glycosylation. These findings suggest that conditions that amplify insulin secretion promote translocation of β-cell iPLA2β to the nuclei, where it may serve a crucial signaling role.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3