IGF-1/IGF-1R blockade ameliorates diabetic kidney disease through normalizing Snail1 expression in a mouse model

Author:

Dong Rong123ORCID,Yu Jiali2,Yu Funxun3,Yang Song4,Qian Qi5,Zha Yan12

Affiliation:

1. Guozhou University School of medicine, Gui Yang, China

2. Department of Nephrology, Guizhou Provincial People’s Hospital, Gui Yang, China

3. NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Gui Yang, China

4. State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Gui Yang, China

5. Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, College of Medicine, Rochester, Minnesota

Abstract

This study investigated the role of insulin-like growth factor-1/insulin-like growth factor-1 receptor (IGF-1/IGF-1R) in the genesis and progression of diabetic kidney disease (DKD) in a streptozotocin (STZ)-induced mouse diabetes model. We showed elevated IGF-1 expression in the DKD kidneys after 16 wk of diabetic onset. Intraperitoneal administration of IGF-1R inhibitor (glycogen synthase kinase-3β, GSK4529) from week 8 to week 16 postdiabetes induction ameliorated urinary albumin excretion and kidney histological changes due to diabetes, including amelioration of glomerulomegaly, inflammatory infiltration, and tubulointerstitial fibrosis. The GSK4529 treatment also attenuated alterations in renal tubular expression of E-cad and matrix protein fibronectin. Moreover, renal fibrosis in DKD (without treatment) was associated with Snail1 overexpression that was effectively prevented by IGF-1R inhibition. Further experiments in cultured renal epithelial cells (NRK) showed that IGF-1 silencing reproduced in vivo effects of IGF-1R inhibition with markedly attenuated Snail1 expression and near normalization of the Ecad1 and fibronectin expression pattern. Further Snail1 silencing prevented high-glucose-induced changes without affecting IGF-1 expression, consistent with Snail1 acting downstream to IGF-1. The antifibrotic effects were also shown with benazepril or insulin treatment but to a much lesser degree. In summary, in STZ-induced diabetic mice, activation of IGF-1 in diabetic kidneys induces fibrogenesis through Snail1 upregulation. The diabetes-related histological and functional changes, as well as fibrogenesis, can be attenuated by IGF-1/IGF-1R inhibition.

Funder

National Natural Science Foundation of China

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3