Adaptation of β-cell mass to substrate oversupply: enhanced function with normal gene expression

Author:

Steil Garry M.1,Trivedi Nitin1,Jonas Jean-Christophe1,Hasenkamp Wendy M.1,Sharma Arun1,Bonner-Weir Susan1,Weir Gordon C.1

Affiliation:

1. Section of Islet Transplantation and Cell Biology, Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215

Abstract

Although type 2 diabetes mellitus is associated with insulin resistance, many individuals compensate by increasing insulin secretion. Putative mechanisms underlying this compensation were assessed in the present study by use of 4-day glucose (GLC; 35% Glc, 2 ml/h) and lipid (LIH; 10% Intralipid + 20 U/ml heparin; 2 ml/h) infusions to rats. Within 2 days of beginning the infusion of either lipid or glucose, plasma glucose profiles were normalized (relative to saline-infused control rats; SAL; 0.45% 2 ml/h). During glucose infusion, plasma glucose was maintained in the normal range by an approximately twofold increase in plasma insulin and an ∼80% increase in β-cell mass. During LIH infusion, glucose profiles were also maintained in the normal range. Plasma insulin responses during feeding were doubled, and β-cell mass increased 54%. For both groups, the increase in β-cell mass was associated with increased β-cell proliferation (98% increase during GLC and 125% increase during LIH). At the end of the 4-day infusions, no significant changes were observed in islet-specific gene transcription (i.e., the expression of islet hormone genes, glucose metabolism genes, and insulin transcription factors were unaffected). Two days after termination of the infusions, the glucose-stimulated plasma insulin response was increased ∼67% in glucose-infused animals. No sustained effect on insulin secretory capacity was observed in the LIH animals. The increase in plasma insulin response after glucose infusion was achieved in the absence of any change in insulin clearance. We conclude that, in rats, an increase in insulin demand after an increase in glucose appearance or free fatty acid leads to an increase in β-cell mass, mediated in part by an increase in β-cell proliferation, and that these compensatory changes lead to increased insulin secretion, normal plasma glucose levels, and the maintenance of normal islet gene expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3