Glutamine supplementation promotes anaplerosis but not oxidative energy delivery in human skeletal muscle

Author:

Bruce Mark1,Constantin-Teodosiu Dumitru2,Greenhaff Paul L.2,Boobis Leslie H.3,Williams Clyde1,Bowtell Joanna L.4

Affiliation:

1. Human Muscle Metabolism Research Group, Loughborough University, Loughborough LE11 3TU;

2. School of Biomedical Sciences, Queens Medical Centre, Nottingham NG7 2UH;

3. Sunderland Royal Hospital, Sunderland SR4 7TP; and

4. Sport and Exercise Research Centre, South Bank University, London SE1 0AA, United Kingdom

Abstract

The aims of the present study were twofold: first to investigate whether TCA cycle intermediate (TCAI) pool expansion at the onset of moderate-intensity exercise in human skeletal muscle could be enhanced independently of pyruvate availability by ingestion of glutamine or ornithine α-ketoglutarate, and second, if it was, whether this modification of TCAI pool expansion had any effect on oxidative energy status during subsequent exercise. Seven males cycled for 10 min at ∼70% maximal O2 uptake 1 h after consuming either an artificially sweetened placebo (5 ml/kg body wt solution, CON), 0.125 g/kg body wtl-(+)-ornithine α-ketoglutarate dissolved in 5 ml/kg body wt solution (OKG), or 0.125 g/kg body wt l-glutamine dissolved in 5 ml/kg body wt solution (GLN). Vastus lateralis muscle was biopsied 1 h postsupplement and after 10 min of exercise. The sum of four measured TCAI (ΣTCAI; citrate, malate, fumarate, and succinate, ∼85% of total TCAI pool) was not different between conditions 1 h postsupplement. However, after 10 min of exercise, ΣTCAI (mmol/kg dry muscle) was greater in the GLN condition (4.90 ± 0.61) than in the CON condition (3.74 ± 0.38, P < 0.05) and the OKG condition (3.85 ± 0.28). After 10 min of exercise, muscle phosphocreatine (PCr) content was significantly reduced ( P < 0.05) in all conditions, but there was no significant difference between conditions. We conclude that the ingestion of glutamine increased TCAI pool size after 10 min of exercise most probably because of the entry of glutamine carbon at the level of α-ketoglutarate. However, this increased expansion in the TCAI pool did not appear to increase oxidative energy production, because there was no sparing of PCr during exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3