Impairment of endothelial nitric oxide production by acute glucose overload

Author:

Kimura Chiwaka1,Oike Masahiro1,Koyama Tetsuya1,Ito Yushi1

Affiliation:

1. Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812 - 8582, Japan

Abstract

We examined the effects of acute glucose overload (pretreatment for 3 h with 23 mM d-glucose) on the cellular productivity of nitric oxide (NO) in bovine aortic endothelial cells (BAEC). We had previously reported (Kimura C, Oike M, and Ito Y. Circ Res, 82: 677–685, 1998) that glucose overload impairs Ca2+ mobilization due to an accumulation of superoxide anions (O2 ) in BAEC. In control cells, ATP induced an increase in NO production, assessed by diaminofluorescein 2 (DAF-2), an NO-sensitive fluorescent dye, mainly due to Ca2+ entry. In contrast, ATP-induced increase in DAF-2 fluorescence was impaired by glucose overload, which was restored by superoxide dismutase, but not by catalase or deferoxamine. Furthermore, pyrogallol, an O2 donor, also attenuated ATP-induced increase in DAF-2 fluorescence. In contrast, a nonspecific intracellular Ca2+ concentration increase induced by the Ca2+ ionophore A-23187, which depletes the intracellular store sites, elevated DAF-2 fluorescence in both control and highd-glucose-treated cells in Ca2+-free solution. These results indicate that glucose overload impairs NO production by the O2 -mediated attenuation of Ca2+entry.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3