Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27

Author:

Lee M. A.1,Bohm M.1,Paul M.1,Bader M.1,Ganten U.1,Ganten D.1

Affiliation:

1. Max Delbruck Center for Molecular Medicine, Berlin-Buch,Germany.

Abstract

Transgenic techniques represent powerful tools for the study of gene-related mechanisms of diseases such as hypertension, which results from a complex interaction between genetic and environmental factors. The renin-angiotensin system, a biochemical cascade in which renin functions as the key enzyme in the formation of the effector peptide angiotensin II, plays a major role in the regulation of blood pressure. The renin gene, therefore, represents an important candidate gene for hypertension. Because rats are more suited than mice for a number of experimental settings often employed in cardiovascular research, we modified the transgenic technique to generate the transgenic rat strain TGR(mREN2)27 harboring the murine Ren-2 gene. These transgenic rats develop fulminant hypertension at an early age despite low levels of renin in plasma and kidney. In addition, high expression of the transgene in a number of extrarenal tissues is associated with increased local formation of angiotensin II. Thus the TGR(mREN2)27 rat represents a model of hypertension with a defined genetic background. Studies on the transgenic rat may not only provide new insights into pathophysiological mechanisms of hypertension in this animal model but also offer the unique possibility to investigate the function and regulation of renin-angiotensin systems in extrarenal tissues. The aim of this review is to compile the knowledge that has been accumulated to date on this transgenic rat and to discuss possible mechanisms responsible for its hypertensive phenotype.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3