Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

Author:

Martinez D. A.1,Orth M. W.1,Carr K. E.1,Vanderby R.1,Vailas A. C.1

Affiliation:

1. Biodynamics Laboratory, University of Wisconsin-Madison 53706, USA.

Abstract

The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skeletal Muscle Collagen: Age, Injury and Disease;Sarcopenia – Age-Related Muscle Wasting and Weakness;2010-11-18

2. The effect of different patterns of growth hormone administration on the IGF axis and somatic and skeletal growth of the dwarf rat;American Journal of Physiology-Endocrinology and Metabolism;2010-03

3. A noninvasive analysis of urinary musculoskeletal collagen metabolism markers from rhesus monkeys subject to chronic hypergravity;Journal of Applied Physiology;2008-10

4. Temporal extracellular matrix adaptations in ligament during wound healing and hindlimb unloading;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2007-10

5. Craniofacial growth in growth hormone-deficient rats after growth hormone supplementation;American Journal of Orthodontics and Dentofacial Orthopedics;2006-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3