Affiliation:
1. Diabetes Research Center, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
Abstract
Glucose metabolism and its relationship with glucose-induced insulin release were studied in beta HC9 and beta TC3 cells to identify and characterize key factors controlling the intermediary metabolism of glucose and glucose-induced insulin release. The beta HC9 cell line, derived from pancreatic islets with beta-cell hyperplasia, is characterized by a normal concentration-dependency curve for glucose-stimulated insulin release, whereas the beta TC3 cell line, derived from pancreatic beta-cell tumors, shows a marked leftward shift of this curve. Maximum velocity and the Michaelis-Menten constant of glucose uptake in beta HC9 and beta TC3 cells were similar, even though GLUT-2 expression in these two cell lines differed. In both cell lines, the kinetic characteristics of glucose usage, glucose oxidation, and glucose-induced oxygen consumption were similar to those of glucose phosphorylation, indicating that the kinetics of glucose metabolism from the glucose phosphorylation step in the cytosol to the mitochondrial process of oxidative phosphorylation are determined by the glucose-phosphorylating enzyme, that is, by glucokinase in beta HC9 cells and by hexokinase in beta TC3 cells. Thus beta HC9 cells provide an opportunity for the quantitative analysis of glucose metabolism, the associated generation of coupling factors, and other essential beta-cell functions involved in glucose sensing and insulin secretion.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献