Affiliation:
1. Department of Biochemistry and Molecular Biology, University ofFlorida, Gainesville 32610, USA.
Abstract
In 3T3-L1 adipocytes, the glycosylation of the GLUT-1 transporter is altered beyond 12 h of glucose deprivation. To determine whether glycogen degradation provides substrate for normal protein glycosylation during this delay, we measured the glycogen content of 3T3-L1 adipocytes. From an initial value of 0.537 +/- 0.097 mumol glucose/10(6) cells, glycogen was depleted in a time-dependent manner in response to glucose deprivation, exhibiting a half-time of 6 h. Surprisingly, fructose did not prevent glycogen depletion. However, in such glycogen-depleted adipocytes, the alteration of GLUT-1 glycosylation in response to glucose deprivation was more rapid than in normal adipocytes. Chinese hamster ovary (CHO) cells, which synthesize abbreviated dolichol-linked oligosaccharides within minutes of glucose deprivation (J. I. Rearick, A. Chapman, and S. Kornfeld. J. Biol. Chem. 256: 6255-6261, 1981), contained only 1% of the level of glycogen found in 3T3-L1 adipocytes. Glycosylation of GLUT-1 was altered in CHO cells within 3 h of glucose deprivation. These data demonstrate that, during glucose stress, glycogen may serve as a buffer for oligosaccharide biosynthesis and provide a potential explanation for varying sensitivities of different cell types to glucose deprivation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献