A novel triple-tracer approach to assess postprandial protein turnover

Author:

Moran Antoinette1ORCID,Toffolo Gianna2,Schiavon Michele2,Vella Adrian3,Klaus Katherine3,Cobelli Claudio2,Nair K. Sreekumaran3

Affiliation:

1. Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota

2. Department of Electronics and Informatics, University of Padova, Padova, Italy

3. Division of Endocrinology, Mayo Clinic, Rochester, Minnesota

Abstract

Insulin and nutrients have profound effects on proteome homeostasis. Currently no reliable methods are available to measure postprandial protein turnover. A triple-tracer method was developed using phenylalanine stable isotope tracers to estimate appearance rates of ingested (Ra meal) and endogenous phenylalanine and the rate of phenylalanine disposal (Rd). This was compared with the “traditional” dual-tracer method, using one (1-CM)- and two (2-CM)-compartment models. For both methods, [13C6]phenylalanine was given orally, and [15N]phenylalanine was constantly infused; the triple-tracer method added [2H5]phenylalanine, infused at rates to mimic meal [13C6]phenylalanine appearance. Additionally, incorporation of meal-derived phenylalanine into specific proteins was measured after purification by two-dimensional electrophoresis. The triple-tracer approach reduced modeling errors, allowing improved reconstruction of Ra meal with a tracer-to-tracee ratio that was more constant and better estimated Rd. The 2-CM better described phenylalanine kinetics and Rd than 1-CM. Thus, the triple-tracer approach using 2-CM is superior for measuring non-steady-state postprandial protein turnover. This novel approach also allows measurement of postprandial synthesis rates of specific plasma proteins. We offer a valid non-steady-state model to measure postprandial protein turnover and synthesis of plasma proteins that can safely be applied in adults, children, and pregnant women.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

HHS | NIH | National Center for Advancing Translational Sciences (NCATS)

Cystic Fibrosis Foundation (CFF)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3