Cardioprotective effect of adiponectin is partially mediated by its AMPK-independent antinitrative action

Author:

Wang Yajing,Tao Ling,Yuan Yuexin,Lau Wayne Bond,Li Rong,Lopez Bernard L.,Christopher Theodore A.,Tian Rong,Ma Xin-Liang

Abstract

Adiponectin (APN) exerts its metabolic regulation largely through AMP-dependent protein kinase (AMPK). However, the role of AMPK in APN's antiapoptotic effect in ischemic-reperfused (I/R) adult cardiomyocytes remains incompletely understood. The present study was designed to determine the involvement of AMPK in the antiapoptotic signaling of APN. Cardiomyocytes from adult male mice overexpressing a dominant-negative α2-subunit of AMPK (AMPK-DN) or wild-type (WT) littermates were subjected to simulated I/R (SI/R) and pretreated with 2 μg/ml globular domain of APN (gAPN) or vehicle. SI/R-induced cardiomyocyte apoptosis was modestly increased in AMPK-DN cardiomyocytes ( P < 0.05). Treatment with gAPN significantly reduced SI/R-induced apoptosis in WT cardiomyocytes as well as in AMPK-DN cardiomyocytes, indicating that the antiapoptotic effect of gAPN is partially AMPK independent. Furthermore, gAPN-induced endothelial nitric oxide synthase (eNOS) phosphorylation was significantly reduced in AMPK-DN cardiomyocytes, suggesting that the APN-eNOS signaling axis is impaired in AMPK-DN cardiomyocytes. Additional experiments demonstrated that treatment of AMPK-DN cardiomyocytes with gAPN reduced SI/R-induced NADPH oxidase overexpression, decreased superoxide generation, and blocked peroxynitrite formation to the same extent as that observed in WT cardiomyocytes. Collectively, our present study demonstrated that although the metabolic and eNOS activation effect of APN is largely mediated by AMPK, the superoxide-suppressing effect of APN is not mediated by AMPK, and this AMPK-independent antioxidant property of APN increased nitric oxide bioavailability and exerted significant antiapoptotic effect.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fat-to-heart crosstalk in health and disease;Frontiers in Genetics;2023-03-24

2. Unveiling IL-33/ST2 Pathway Unbalance in Cardiac Remodeling Due to Obesity in Zucker Fatty Rats;International Journal of Molecular Sciences;2023-01-19

3. Emerging Role of cAMP/AMPK Signaling;Cells;2022-01-17

4. Impact of Different Adipose Depots on Cardiovascular Disease;Journal of Cardiovascular Pharmacology;2021-12

5. Impact of Adiponectin Resistance on Coronary Artery Disease Severity;Nigerian Journal of Clinical Practice;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3