Affiliation:
1. Departments of Pathology and Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
Abstract
Troglitazone is a peroxisome proliferator-activated receptor-γ agonist that has been shown to halt mesangium expansion in experimental models of type 2 diabetes mellitus and to act directly on rat mesangial cells. Because glutamine serves as the precursor for cellular biosynthetic processes, we asked whether troglitazone would inhibit mesangial cell glutamine metabolism under these conditions. Confluent monolayers of rat mesangial cells were incubated in RPMI medium in the presence of troglitazone or vehicle (DMSO). Troglitazone effected a dose-dependent reduction in glutamine utilization and in alanine formation, associated with a decrease in monolayer collagen-glycosaminoglycan content. Despite the reduced glutamine uptake, ammonium formation did not decrease, consistent with increased glutamate flux through the deamination pathway. Assayable activity of the alanine aminotransferase decreased by 63%, whereas assayable glutamate dehydrogenase remained unchanged. In control monolayers, the sum of ammonium plus alanine plus glutamate nitrogen released accounted for <75% of the glutamine nitrogen uptake. In troglitazone-treated monolayers, all of the glutamine nitrogen taken up could be accounted for as ammonium nitrogen released into the medium. These results are consonant with troglitazone reducing glutamine metabolism and specifically the transamination pathway in rat mesangial cells associated with a reduction in collagen-glycosaminoglycan content.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献