Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin

Author:

Fisher Jonathan S.1,Gao Jiaping1,Han Dong-Ho1,Holloszy John O.1,Nolte Lorraine A.1

Affiliation:

1. Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

Evidence has accumulated that activation of AMP kinase (AMPK) mediates the acute increase in glucose transport induced by exercise. As the exercise-induced, insulin-independent increase in glucose transport wears off, it is followed by an increase in muscle insulin sensitivity. The major purpose of this study was to determine whether hypoxia and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), which also activate AMPK and stimulate glucose transport, also induce an increase in insulin sensitivity. We found that the increase in glucose transport in response to 30 μU/ml insulin was about twofold greater in rat epitrochlearis muscles that had been made hypoxic or treated with AICAR 3.5 h previously than in untreated control muscles. This increase in insulin sensitivity was similar to that induced by a 2-h bout of swimming or 10 min of in vitro electrically stimulated contractions. Neither phosphatidylinositol 3-kinase activity nor protein kinase B (PKB) phosphorylation in response to 30 μU/ml insulin was enhanced by prior exercise or AICAR treatment that increased insulin sensitivity of glucose transport. Inhibition of protein synthesis by inclusion of cycloheximide in the incubation medium for 3.5 h after exercise did not prevent the increase in insulin sensitivity. Contractions, hypoxia, and treatment with AICAR all caused a two- to three-fold increase in AMPK activity over the resting level. These results provide evidence that the increase in insulin sensitivity of muscle glucose transport that follows exercise is mediated by activation of AMPK and involves a step beyond PKB in the pathway by which insulin stimulates glucose transport.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3