Acute adaptation in adrenergic control of lipolysis during physical exercise in humans

Author:

Wahrenberg H.1,Engfeldt P.1,Bolinder J.1,Arner P.1

Affiliation:

1. Department of Medicine and Research Center, Huddinge Hospital,Karolinska Institute, Sweden.

Abstract

During prolonged exercise, the free fatty acids derived from adipocyte lipolysis are the principal fuel utilized by muscles. In humans, the lipid mobilization from adipose tissue is mainly regulated by insulin and catecholamines: the latter hormones have both beta-adrenergic stimulatory and alpha 2-adrenergic inhibitory effects on lipolysis. The aim of this study was to determine whether rapid alterations in the peripheral action of the regulatory hormones occur during physical work and whether they are of importance for the enhanced lipid mobilization. The acute effects of exercise on the regulation of lipolysis were investigated in isolated adipocytes removed from the gluteal region of 14 healthy volunteers before and immediately after the exercise period. Exercise induced a 20-35% significant increase in the lipolytic response to noradrenaline alone and in combination with the selective alpha 2-antagonist yohimbine and to the pure beta-agonist isoproterenol in isolated adipocytes. The antilipolytic effects of both the alpha 2-agonist clonidine and insulin were unaffected by exercise. Exercise did not influence the specific adipocyte receptor binding of 125I-cyanopindolol (beta-adrenergic receptor), [3H]yohimbine (alpha-adrenergic receptor), and mono-125I-[Tyr A14]insulin (insulin receptor). In conclusion, a single period of submaximal exercise increases adipocyte lipolytic responsiveness to catecholamines through an increased beta-adrenoceptor-mediated effect at steps distal to the receptor binding. Thus the increased peripheral action of catecholamines may be of importance for the observed enhanced lipid mobilization during physical work.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3