Insulin differentially regulates systemic and skeletal muscle vascular resistance

Author:

Baron A. D.1,Brechtel G.1

Affiliation:

1. Department of Medicine, Indiana University Medical Center, Indianapolis, Indiana 46202.

Abstract

To explore the relationships among insulin action, vascular resistance, and insulin sensitivity, we studied three groups of lean (Ln) and one group of obese (Ob) men. Glucose uptake was measured in whole body (WBGU) and in leg muscle (LGU) under basal and hyperinsulinemic euglycemic conditions. Mean arterial pressure (MAP), cardiac output (CO), leg blood flow (LBF), and systemic (SVR) and leg (LVR) vascular resistance were also ascertained. Ln groups were studied during insulin infusion rates of 20, 40, and 600 mU.m-2.min-1 and the Ob group at 40 mU.m-2.min-1. In Ob vs. Ln groups, WBGU and LGU were reduced by 51 (P < 0.01) and 42% (P < 0.05), respectively. In response to insulin, LBF increased > 60% (P < 0.01) in Ln groups but only approximately 20% in the Ob group, P = not significant (NS). CO was unchanged in Ob compared with a 15% increase (P < 0.05) in Ln groups, LBF was highly correlated with CO, r 0.70, P < 0.001. During hyperinsulinemia, MAP and LVR decreased in Ln (P < 0.001) but not in the Ob group (P = NS). In Ln groups, SVR decreased by 26 vs. 9% in the Ob group, P < 0.01. In summary, 1) insulin decreases LVR more than SVR and via this mechanism redistributes CO to insulin-sensitive tissues, 2) this insulin effect is blunted in Ob humans, and 3) insulin decreases MAP and vascular resistance more effectively in insulin-sensitive than in insulin-resistant subjects. In conclusion, insulin resistance to carbohydrate metabolism is associated with resistance to insulin's effect to decrease skeletal muscle vascular resistance and as such could act as a risk factor for the development of hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3