Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver

Author:

Bisbis S.1,Bailbe D.1,Tormo M. A.1,Picarel-Blanchot F.1,Derouet M.1,Simon J.1,Portha B.1

Affiliation:

1. Institut National de la Recherche Agronomique, Station de RechercheAgricole, Nouzilly, France.

Abstract

We have previously shown that the glucose intolerance and the hyperglycemic state in the GK rat, a new spontaneous model of non-insulin-dependent (type II) diabetes without obesity, are partly accounted for by an alteration of the pancreatic B cell response. On the other hand, the hyperglycemic-hyperinsulinemic pattern in these rats suggests a decrease of response to insulin in the basal state. In the present study, in vivo insulin action was assessed in 8-wk-old GK females at basal and submaximal (euglycemic clamp) insulin levels. Overall glucose utilization (OGU), individual tissue glucose utilization (ITGU, in vivo uptake of the glucose analogue 2-deoxy-D-glucose as the relative index of glucose metabolism), as well as hepatic glucose production (GP) and liver insulin receptor properties were determined under these two conditions. The basal OGU was significantly higher in the GK females, compared with that in control Wistar females. The hyperinsulinemic-euglycemic clamp experiments indicated that peripheral insulin resistance was installed at 8 wk of age in the GK females because 1) OGU was significantly lower and 2) in some peripheral tissues (epitrochlearis muscle, periovarian, and inguinal white adipose tissues), but not all, ITGU was significantly lower compared with corresponding ITGU in control rats. In the basal state GP was significantly higher in the GK rats. At submaximal hyperinsulinemia (and euglycemia), it was less effectively suppressed than in the controls, thus demonstrating liver insulin resistance. Under both basal state and clamp condition, binding of 125I-A14-insulin to liver membranes of GK rats was significantly decreased by 20-30%.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3