Author:
Wright David C.,Geiger Paige C.,Holloszy John O.,Han Dong-Ho
Abstract
Increases in contraction-stimulated glucose transport in fast-twitch rat epitrochlearis muscle are mediated by AMPK- and Ca2+/calmodulin-dependent protein kinase (CAMK)-dependent signaling pathways. However, recent studies provide evidence suggesting that contraction-stimulated glucose transport in slow-twitch skeletal muscle is mediated through an AMPK-independent pathway. The purpose of the present study was to test the hypothesis that contraction-stimulated glucose transport in rat slow-twitch soleus muscle is mediated by an AMPK-independent/Ca2+-dependent pathway. Caffeine, a sarcoplasmic reticulum (SR) Ca2+-releasing agent, at a concentration that does not cause muscle contractions or decreases in high-energy phosphates, led to an ∼2-fold increase in 2-deoxyglucose (2-DG) uptake in isolated split soleus muscles. This increase in glucose transport was prevented by the SR calcium channel blocker dantrolene and the CAMK inhibitor KN93. Conversely, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), an AMPK activator, had no effect on 2-DG uptake in isolated split soleus muscles yet resulted in an ∼2-fold increase in the phosphorylation of AMPK and its downstream substrate acetyl-CoA carboxylase. The hypoxia-induced increase in 2-DG uptake was prevented by dantrolene and KN93, whereas hypoxia-stimulated phosphorylation of AMPK was unaltered by these agents. Tetanic muscle contractions resulted in an ∼3.5-fold increase in 2-DG uptake that was prevented by KN93, which did not prevent AMPK phosphorylation. Taken in concert, our results provide evidence that hypoxia- and contraction-stimulated glucose transport is mediated entirely through a Ca2+-dependent mechanism in rat slow-twitch muscle.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献