Metallothionein-I- and -II-deficient mice display increased susceptibility to cadmium-induced fetal growth restriction

Author:

Selvaratnam Johanna123,Guan Haiyan123,Koropatnick James45367,Yang Kaiping123

Affiliation:

1. Children's Health Research Institute and

2. Departments of 3Obstetrics and Gynaecology,

3. Physiology and

4. London Regional Cancer Program, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada; and

5. Oncology,

6. Pharmacology, Microbiology and Immunology, and

7. Pathology, University of Western Ontario, London, Ontario, Canada

Abstract

Maternal cadmium exposure induces fetal growth restriction (FGR), but the underlying mechanisms remain largely unknown. The placenta is the main organ known to protect the fetus from environmental toxins such as cadmium. In this study, we examine the role of the two key placental factors in cadmium-induced FGR. The first is placental enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which is known to protect the fetus from exposure to high cortisol levels and subsequently FGR, and the second the cadmium binding/sequestering proteins metallotheionein (MT)-I and -II. Using the MT-I/II −/− mouse model, pregnant mice were administered cadmium, following which pups and placentas were collected and examined. MT-I/II−/− pups exposed to cadmium were significantly growth restricted, but neither placental weight nor 11β-HSD2 was altered. Although cadmium administration did not result in any visible structural changes in the placenta, increased apoptosis was detected in MT-I/II−/− placentas following cadmium exposure, with a significant increase in levels of both p53 and caspase 3 proteins. Additionally, glucose transporter (GLUT1) was significantly reduced in MT-I/II−/− placentas of pups exposed to cadmium, whereas zinc transporter (ZnT-1) remained unaltered. Taken together, these results demonstrate that MT-I/II−/− mice are more vulnerable to cadmium-induced FGR. The present data also suggest that increased apoptosis and reduced GLUT1 expression in the placenta contribute to the molecular mechanisms underlying cadmium-induced FGR.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3