Regulation of lipid synthesis genes and milk fat production in human mammary epithelial cells during secretory activation

Author:

Mohammad Mahmoud A.1,Haymond Morey W.1

Affiliation:

1. Department of Pediatrics, Children's Nutrition Research Center, U.S. Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas

Abstract

Expression of genes for lipid biosynthetic enzymes during initiation of lactation in humans is unknown. Our goal was to study mRNA expression of lipid metabolic enzymes in human mammary epithelial cell (MEC) in conjunction with the measurement of milk fatty acid (FA) composition during secretory activation. Gene expression from mRNA isolated from milk fat globule (MFG) and milk FA composition were measured from 6 h to 42 days postpartum in seven normal women. Over the first 96 h postpartum, daily milk fat output increased severalfold and mirrored expression of genes for all aspects of lipid metabolism and milk FA production, including lipolysis at the MEC membrane, FA uptake from blood, intracellular FA transport, de novo FA synthesis, FA and glycerol activation, FA elongation, FA desaturation, triglyceride synthesis, cholesterol synthesis, and lipid droplet formation. Expression of the gene for a key lipid synthesis regulator, sterol regulatory element-binding transcription factor 1 (SREBF1), increased 2.0-fold by 36 h and remained elevated over the study duration. Expression of genes for estrogen receptor 1, thyroid hormone-responsive protein, and insulin-induced 2 increased progressively to plateau by 96 h. In contrast, mRNA of peroxisome proliferator-activated receptor-γ decreased severalfold. With onset of lactation, increased de novo synthesis of FA was the most prominent change in milk FA composition and mirrored the expression of FA synthesis genes. In conclusion, milk lipid synthesis and secretion in humans is a complex process requiring the orchestration of a wide variety of pathways of which SREBF1 may play a primary role.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3