Evidence for a delayed rectifier-like potassium current in the clonal rat pituitary cell line GH3

Author:

Simasko S. M.1

Affiliation:

1. Department of Physiology, School of Medicine, State University of New York, Buffalo 14214.

Abstract

Whole cell patch-clamp techniques were used to investigate voltage-dependent potassium currents in the clonal rat pituitary cell line GH3. Inactivation of the voltage-dependent potassium current was best fit by two time constants (50–80 ms and 2–3 s) plus a sustained value. These components of inactivation could be separated based on their voltage-dependent properties and pharmacological sensitivity to 10 mM tetraethylammonium (TEA) and 5 mM 4-aminopyridine (4-AP). The fast component begins to activate around -50 mV, is half-maximally activated at -19 mV, is 50% inactivated at -55 mV, and is sensitive to 4-AP but insensitive to TEA. The slow component begins to activate at around -10 mV, is half-maximally activated at +4 mV, is 50% inactivated at -23 mV, and is sensitive to both TEA and 4-AP. The sustained component is apparent by 0 mV but has not yet reached half-maximal activation at +57 mV. It is somewhat sensitive to TEA but relatively resistant to 4-AP. In the presence of TEA it was found that the fast-inactivating component actually inactivated in a biphasic manner with time constants of approximately 50 and 500 ms. From the properties of these components it is concluded that at least three distinct voltage-dependent potassium channel types exist in GH3 cells as follows: an A-like current (fast-inactivating component), a delayed rectifier-like current (slow-inactivating component), and the voltage-dependent properties of calcium-dependent potassium channels (the sustained component).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3