Insulin increases a biochemically distinct pool of diacylglycerol in the rat soleus muscle

Author:

Chen K. S.1,Heydrick S. J.1,Brown M. L.1,Friel J. C.1,Ruderman N. B.1

Affiliation:

1. Evans Department of Medicine, Boston University Medical Center, Boston02118.

Abstract

Insulin stimulates the incorporation of glucose-carbon into diacylglycerol (DAG) in rat skeletal muscle, and its ability to do so is enhanced severalfold after the muscle is denervated (S. J. Heydrick, N. B. Ruderman, T. J. Kurowski, H. A. Adams, and K. S. Chen. Diabetes 40: 1707-1711, 1991). The present studies were carried out to assess the nature of this newly synthesized DAG and to identify factors other than insulin that determine its rate of appearance in the incubated rat soleus muscle. In control muscles, incubated at a medium glucose concentration of 6-7.5 mM, insulin (10 mU/ml) increased DAG content (mass) by 20-25% and increased the incorporation of a 14C label from extracellular [14C]glucose into DAG by 200-300%. The labeling of DAG reached a plateau within 20 min, at which time the labeled DAG comprised a very small percentage of total muscle DAG. Molecular species analysis revealed that DAG species having fatty acids of 18:2/20:4 and 18:2/18:2 each constituted approximately 2% of total DAG content but contained 20 and 15%, respectively, of the glucose-derived label in DAG. In contrast, 16:0/18:1 accounted for > 80% of total DAG content but only 18% of the total label incorporated into DAG. Insulin did not alter this pattern. Denervation also did not alter the molecular species profiles of the labeled DAGs or DAG analyzed by mass. An increased incorporation of glucose-carbon into DAG was observed in muscles incubated with 30 mM glucose in place of the usual 7.5-mM concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3