Exercise-induced fall in insulin: mechanism of action at the liver and effects on muscle glucose metabolism

Author:

Zinker B. A.1,Mohr T.1,Kelly P.1,Namdaran K.1,Bracy D. P.1,Wasserman D. H.1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt Schoolof Medicine, Nashville, Tennessee 37232-0615.

Abstract

To determine the importance of the fall in insulin on whole body glucose fluxes and muscle glucose metabolism during exercise, dogs ran on a motorized treadmill for 90 min at a moderate work rate with somatostatin (SRIF) infused to suppress insulin and glucagon and basal (B-INS; n = 6 dogs) or exercise-stimulated (S-INS; n = 8 dogs) insulin replacement. The fall in insulin during exercise potently stimulates glucose production at least in part by potentiating the actions of glucagon. To assess the hepatic effects of insulin in the absence of its potentiating effect on glucagon action, glucagon levels were not restored during SRIF infusion. At least 17 days before experimentation, dogs underwent surgery for chronic placement of sampling (carotid artery and femoral vein) and infusion (inferior vena cava and portal vein) catheters. Hindlimb blood flow was assessed by placement of a Doppler flow cuff on the external iliac artery. Whole body glucose production (Ra) and disappearance (Rd) were assessed with [3-3H]glucose, and hindlimb glucose uptake and metabolism were assessed with arterial-venous differences and [U-14C]glucose. Insulin levels were 69 +/- 6 and 61 +/- 7 pM at rest in B-INS and S-INS and 62 +/- 10 and 41 +/- 6 pM at 30 min of exercise. Glucose levels were clamped at euglycemic levels with an exogenous glucose infusion during rest and exercise in both groups. Exercise-induced increases in Ra, Rd, hindlimb glucose uptake, and hindlimb oxidative and nonoxidative glucose metabolism were not affected by maintenance of basil insulin levels during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3