Folate status modulates the induction of hepatic glycineN-methyltransferase and homocysteine metabolism in diabetic rats

Author:

Nieman Kristin M.,Hartz Cara S.,Szegedi Sandra S.,Garrow Timothy A.,Sparks Janet D.,Schalinske Kevin L.

Abstract

A diabetic state induces the activity and abundance of glycine N-methyltransferase (GNMT), a key protein in the regulation of folate, methyl group, and homocysteine metabolism. Because the folate-dependent one-carbon pool is a source of methyl groups and 5-methyltetrahydrofolate allosterically inhibits GNMT, the aim of this study was to determine whether folate status has an impact on the interaction between diabetes and methyl group metabolism. Rats were fed a diet containing deficient (0 ppm), adequate (2 ppm), or supplemental (8 ppm) folate for 30 days, after which diabetes was initiated in one-half of the rats by streptozotocin treatment. The activities of GNMT, phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine S-methyltransferase (BHMT) were increased about twofold in diabetic rat liver; folate deficiency resulted in the greatest elevation in GNMT activity. The abundance of GNMT protein and mRNA, as well as BHMT mRNA, was also elevated in diabetic rats. The marked hyperhomocysteinemia in folate-deficient rats was attenuated by streptozotocin, likely due in part to increased BHMT expression. These results indicate that a diabetic state profoundly modulates methyl group, choline, and homocysteine metabolism, and folate status may play a role in the extent of these alterations. Moreover, the upregulation of BHMT and PEMT may indicate an increased choline requirement in the diabetic rat.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Reference61 articles.

1. Net uptake of plasma homocysteine by the rat kidney in vivo

2. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

3. [22] Phosphatidylethanolamine: Adenosylmethionine methyltransferase(s) from animal liver

4. Effects of alloxan on S-adenosylmethionine metabolism in the rat liver

5. Cantoni GL, Richards HH, and Chiang PK.Inhibitors ofS-adenosylhomocysteine hydrolase and their role in regulation of biological methylation. In:Transmethylation, edited by Usdin E, Borchardt RT, and Creveling CR. New York: Elsevier, 1978, p. 155–164.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3