Response to intravenous injections of amylin and glucagon in fasted, fed, and hypoglycemic rats

Author:

Young A. A.1,Cooper G. J.1,Carlo P.1,Rink T. J.1,Wang M. W.1

Affiliation:

1. Department of Physiology, Amylin Pharmaceuticals, San Diego,California 92121.

Abstract

The actions of intravenous glucagon and amylin, a newly discovered hyperglycemic pancreatic islet hormone, have been compared in 20-h fasted and fed, lightly anesthetized rats, and in rats made hypoglycemic with an insulin infusion. In fasted animals, amylin (75 nmol/kg) was more effective than glucagon (90 nmol/kg) in increasing plasma glucose (glucose increment 4.55 vs. 1.71 mM, P < 0.001). Amylin elicited a marked increase in plasma lactate, as previously reported, whereas glucagon did not alter plasma lactate. In fed animals, glucagon elicited twice as much increase in plasma glucose as did amylin; amylin again elicited a marked lactate increase that was greater (increment 1.45 vs. 0.97 mM, P < 0.05) and more prolonged than in the fasted state, whereas glucagon was without effect on lactate levels. These findings are consistent with glucagon's known action to promote hyperglycemia from hepatic glycogenolysis and amylin's demonstrated action to promote muscle glycogenolysis and increase lactate supply to the liver. Infusions of sodium lactate that produced plasma lactate increments similar to those evoked by 75 nmol/kg amylin evoked patterns of glucose response in fasted and fed rats similar to those evoked by amylin. Thus increased lactate supply to the liver may account for amylin's hyperglycemic effects. Amylin and glucagon could each restore plasma glucose to control levels in fasted animals made hypoglycemic by insulin infusion (plasma glucose reduced to 3.3 mM). A bolus of 75 nmol/kg amylin was more effective than 180 nmol/kg glucagon, restoring basal glucose levels for > 3 h, whereas glucagon restored it for < 1 h.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3