Human intestinal monoacylglycerol acyltransferase: differential features in tissue expression and activity

Author:

Lockwood John F.1,Cao Jingsong1,Burn Paul1,Shi Yuguang1

Affiliation:

1. Endocrine Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285

Abstract

Acyl CoA-monoacylglycerol acyltransferase (MGAT) catalyzes the first step in triacyglycerol resynthesis involved in dietary absorption in enterocytes. Despite its potentially important role in dietary fat absorption, a gene encoding a human intestinal MGAT has not been identified. In this study, we report the identification and functional characterization of a human intestinal MGAT ( hMGAT2) and its splice variant (hMGAT2V). The hMGAT2 gene encodes a peptide of 334 amino acids with a molecular mass of 38.2 kDa that shares 81 and 47% amino acid identities with the mouse MGAT2 and the human diacylglycerol acyltransferase (DGAT2) enzymes, respectively. The hMGAT2 gene is localized on chromosome 11q13.5, adjacent to the DGAT2 gene, suggesting gene duplication. Transient expression of hMGAT2, but not an alternatively spliced variant, hMGAT2V, in COS-7 cells led to a ninefold increase in the synthesis of DAG. The human and mouse differ significantly in tissue distribution of MGAT2.In addition to a predominant expression in the small intestine in both species, distinct levels were also found in the human liver, contrasting with higher levels in the mouse kidney. In comparison with a single 1.8-kb transcript in mouse, the hMGAT2 gene expressed two transcripts of 3.0 and 6.0 kb in size that encode MGAT2 and an inactive peptide with unknown functions, respectively. Despite a significant level of hMGAT2 mRNA in the human liver, little MGAT activity was detected in liver microsomes when tested against monoacyglcerols with different unsaturated side chains, suggesting possible posttranscriptional regulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3