Local myostatin inhibition improves skeletal muscle glucose uptake in insulin-resistant high-fat diet-fed mice

Author:

Eilers Wouter1,Chambers David2,Cleasby Mark3,Foster Keith1

Affiliation:

1. School of Biological Sciences, University of Reading, Reading, United Kingdom

2. Wolfson Centre for Age-Related Diseases, King’s College, University of London, London, United Kingdom

3. Royal Veterinary College, University of London, London, United Kingdom

Abstract

Myostatin inhibition is thought to improve whole body insulin sensitivity and mitigate the development of insulin resistance in models of obesity. However, although myostatin is known to be a major regulator of skeletal muscle mass, the direct effects of myostatin inhibition in muscle on glucose uptake and the mechanisms that may underlie this are still unclear. We investigated the effect of local myostatin inhibition by adeno-associated virus-mediated overexpression of the myostatin propeptide on insulin-stimulated skeletal muscle glucose disposal in chow-fed or high fat diet-fed mice and evaluated the molecular pathways that might mediate this. We found that myostatin inhibition improved glucose disposal in obese high fat diet-fed mice alongside the induction of muscle hypertrophy but did not have an impact in chow-fed mice. This improvement was not associated with greater glucose transporter or peroxisome proliferator-activated receptor-γ coactivator-1α expression or 5′ AMP-activated protein kinase activation as previously suggested. Instead, transcriptomic analysis suggested that the improvement in glucose disposal was associated with significant enrichment in genes involved in fatty acid metabolism and translation of mitochondrial genes. Thus, myostatin inhibition improves muscle insulin-stimulated glucose disposal in obese high fat diet-fed mice independent of muscle hypertrophy, potentially involving previously unidentified pathways.

Funder

Diabetes UK

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3