Author:
Frost Robert A.,Nystrom Gerald J.,Lang Charles H.
Abstract
Although an individual's genetic makeup is a major determinant of muscle mass, other influences, such as hormones, cytokines, nutrition, and exercise can also modulate muscle size. IL-6 is an important inflammatory cytokine. Mice that overexpress IL-6 fail to thrive and/or have reduced skeletal muscle mass. The purpose of the present study was to determine whether the stress hormone epinephrine increases inflammatory cytokine expression in skeletal muscle and muscle cells. Infusion of epinephrine in vivo for 2 h increased IL-6 protein (15-fold) and mRNA (40-fold) in skeletal muscle but not in liver. Epinephrine had a similar effect in C2C12 muscle cells, where the hormone increased IL-6 protein and mRNA in a dose- and time-dependent manner. Epinephrine-stimulated IL-6 expression was attenuated by the α-adrenergic receptor antagonist phentolamine and completely blocked by either the β1/2-adrenergic receptor antagonist propranalol or the β2-antagonist ICI-118551. The transcriptional inhibitor DRB and the synthetic glucocorticoid dexamethasone also blocked epinephrine-induced IL-6. SP-600125 (a JNK inhibitor) and SB-202190 (a p38 MAP kinase inhibitor) completely blocked epinephrine-induced IL-6 synthesis. Endotoxin and epinephrine given together had a synergistic affect on IL-6 mRNA and protein expression. Trichostatin A (a histone deacetylase inhibitor) blocked both endotoxin- and epinephrine-induced IL-6 expression. These data suggest that epinephrine induces IL-6 synthesis in skeletal muscle in vivo and myocytes in vitro. Epinephrine utilizes predominantly the β1/2-adrenergic receptors to stimulate IL-6 synthesis. Endotoxin and epinephrine synergize to increase IL-6 mRNA expression. Optimal IL-6 synthesis may require both stress kinase and histone deacetylase activity.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献