Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats

Author:

Klieverik Lars P.,Sauerwein Hans P.,Ackermans Mariëtte T.,Boelen Anita,Kalsbeek Andries,Fliers Eric

Abstract

Thyrotoxicosis is known to induce a broad range of changes in carbohydrate metabolism. Recent studies have identified the sympathetic and parasympathetic nervous system as major regulators of hepatic glucose metabolism. The present study aimed to investigate the pathogenesis of altered endogenous glucose production (EGP) in rats with mild thyrotoxicosis. Rats were treated with methimazole in drinking water and l-thyroxine (T4) from osmotic minipumps to either reinstate euthyroidism or induce thyrotoxicosis. Euthyroid and thyrotoxic rats underwent either a sham operation, a selective hepatic sympathetic denervation (Sx), or a parasympathetic denervation (Px). After 10 days of T4 administration, all animals were submitted to a hyperinsulinemic euglycemic clamp combined with stable isotope dilution to measure EGP. Plasma triiodothyronine (T3) showed a fourfold increase in thyrotoxic compared with euthyroid animals. EGP was increased by 45% in thyrotoxic compared with euthyroid rats and correlated significantly with plasma T3. In thyrotoxic rats, hepatic PEPCK mRNA expression was increased 3.5-fold. Relative suppression of EGP during hyperinsulinemia was 34% less in thyrotoxic than in euthyroid rats, indicating hepatic insulin resistance. During thyrotoxicosis, Sx attenuated the increase in EGP, whereas Px resulted in increased plasma insulin with unaltered EGP compared with intact animals, compatible with a further decrease in hepatic insulin sensitivity. We conclude that chronic, mild thyrotoxicosis in rats increases EGP, whereas it decreases hepatic insulin sensitivity. Sympathetic hepatic innervation contributes only to a limited extent to increased EGP during thyrotoxicosis, whereas parasympathetic hepatic innervation may function to restrain EGP in this condition.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Reference40 articles.

1. Ackermans MT, Pereira Arias AM, Bisschop PH, Endert E, Sauerwein HP, Romijn JA. The quantification of gluconeogenesis in healthy men by (2)H2O and [2-(13)C]glycerol yields different results: rates of gluconeogenesis in healthy men measured with (2)H2O are higher than those measured with [2-(13)C]glycerol. J Clin Endocrinol Metab 86: 2220–2226, 2001.

2. Thyroid Hormone Receptor Expression in the Human Hypothalamus and Anterior Pituitary

3. An Afferent Vagal Nerve Pathway Links Hepatic PPARα Activation to Glucocorticoid-Induced Insulin Resistance and Hypertension

4. Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice

5. Sympathovagal imbalance in hyperthyroidism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3