Hyperphosphorylation of fetal liver IGFBP-1 precedes slowing of fetal growth in nutrient-restricted baboons and may be a mechanism underlying IUGR

Author:

Kakadia Jenica H.1,Jain Bhawani B.1,Biggar Kyle2,Sutherland Austen1,Nygard Karen3,Li Cun45,Nathanielsz Peter W.45,Jansson Thomas6,Gupta Madhulika B.178

Affiliation:

1. Department of Biochemistry, University of Western Ontario, London, Ontario, Canada

2. Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada

3. Biotron Integrated Microscopy Facility, University of Western Ontario, London, Ontario, Canada

4. University of Wyoming, Laramie, Wyoming

5. Southwest National Primate Research Center, San Antonio, Texas

6. Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado

7. Department of Pediatrics, University of Western Ontario, London, Ontario, Canada

8. Children’s Health Research Institute, London, Ontario, Canada

Abstract

In cultured fetal liver cells, insulin-like growth factor (IGF) binding protein (IGFBP)-1 hyperphosphorylation in response to hypoxia and amino acid deprivation is mediated by inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling and casein kinase (CK)2. We hypothesized that fetal liver mTOR inhibition, activation of AAR and CK2, and IGFBP-1 hyperphosphorylation occur before development of intrauterine growth restriction (IUGR). Pregnant baboons were fed a control (C) or a maternal nutrient restriction (MNR; 70% calories of control) diet starting at gestational day (GD) 30 (term GD 185). Umbilical blood and fetal liver tissue were obtained at GD 120 (C, n = 7; MNR, n = 10) and 165 (C, n = 7; MNR, n = 8). Fetal weights were unchanged at GD 120 but decreased at GD 165 in the MNR group (−13%, P = 0.03). IGFBP-1 phosphorylation, as determined by parallel reaction monitoring mass spectrometry (PRM-MS), immunohistochemistry, and/or Western blot, was enhanced in MNR fetal liver and umbilical plasma at GD 120 and 165. IGF-I receptor autophosphorylationTyr1135(−64%, P = 0.05) was reduced in MNR fetal liver at GD 120. Furthermore, fetal liver CK2 (α/α′/β) expression, CK2β colocalization, proximity with IGFBP-1, and CK2 autophosphorylationTyr182were greater at GD 120 and 165 in MNR vs. C. Additionally, mTOR complex (mTORC)1 (p-P70S6KThr389, −52%, P = 0.05) and mTORC2 (p-AktSer473, −56%, P < 0.001) activity were decreased and AAR was activated (p-GCN2Thr898, +117%, P = 0.02; p-eIF2αSer51, +294%, P = 0.002; p-ERKThr202, +111%, P = 0.03) in MNR liver at GD 120. Our data suggest that fetal liver IGFBP-1 hyperphosphorylation, mediated by mTOR inhibition and both AAR and CK2 activation, is a key link between restricted nutrient and oxygen availability and the development of IUGR.

Funder

NIH

Lawson Reaserch Grant

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3