Analyte flux through chronically implanted subcutaneous polyamide membranes differs in humans and rats

Author:

Wisniewski N.1,Rajamand N.2,Adamsson U.3,Lins P. E.3,Reichert W. M.1,Klitzman B.14,Ungerstedt U.2

Affiliation:

1. Departments of Biomedical Engineering and

2. Department of Physiology and Pharmacology, Karolinska Institute, Stockholm S-17177; and

3. Department of Medicine, Karolinska Institute, Danderyd Hospital, Stockholm S-18288, Sweden

4. Plastic Surgery, Duke University Medical Center, Duke University, Durham, North Carolina 27710;

Abstract

The rat is commonly used to evaluate physiological responses of subcutaneous tissue to implanted devices. In vivo longevity of various devices and the biocompatibility of biomaterials depend on how adjacent tissue interacts. How closely the rat model predicts the human response has not been well characterized. The objective of this study was to compare rat and human subcutaneous foreign body responses by monitoring the biochemical environment at a polymer-tissue interface over 8 days using microdialysis. Polyamide microdialysis probes were implanted subcutaneously in humans and rats ( n = 12). Daily microdialysis samples were analyzed for glucose, lactate, pyruvate, glycerol, and urea. Blood glucose was also monitored. Analyte concentrations differed significantly between rats and humans at the implant-tissue interface. There were also qualitative differences in the 8-day trends. For example, over 8 days, microdialysate glucose increased two- to fourfold in humans but decreased in rats ( P < 0.001). This study reveals profound physiological differences at material-tissue interfaces in rats and humans and highlights the need for caution when extrapolating subcutaneous rat biocompatibility data to humans.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3