Extensive effects of in vitro oocyte maturation on rhesus monkey cumulus cell transcriptome

Author:

Lee Young S.1,VandeVoort Catherine A.23,Gaughan John P.4,Midic Uros5,Obradovic Zoran5,Latham Keith E.16

Affiliation:

1. Fels Institute for Cancer Research and Molecular Biology and

2. California National Primate Research Center and

3. Department of Obstetrics and Gynecology, University of California, Davis, California;

4. Biostatistics Consulting Center, Temple University School of Medicine; and

5. The Center for Information Science and Technology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania

6. Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania;

Abstract

The elaboration of a quality oocyte is integrally linked to the correct developmental progression of cumulus cell phenotype. In humans and nonhuman primates, oocyte quality is diminished with in vitro maturation. To determine the changes in gene expression in rhesus monkey cumulus cells (CC) that occur during the final day prior to oocyte maturation and how these changes differ between in vitro (IVM) and in vivo maturation (VVM), we completed a detailed comparison of transcriptomes using the Affymetrix gene array. We observed a large number of genes differing in expression when comparing IVM-CC and VVM-CC directly but a much larger number of differences when comparing the transitions from the prematuration to the post-IVM and post-VVM states. We observed a truncation or delay in the normal pattern of gene regulation but also remarkable compensatory changes in gene expression during IVM. Among the genes affected by IVM are those that contribute to productive cell-cell interactions between cumulus cell and oocyte and between cumulus cells. Numerous genes involved in lipid metabolism are incorrectly regulated during IVM, and the synthesis of sex hormones appears not to be suppressed during IVM. We identified a panel of 24 marker genes, the expression of which should provide the foundation for understanding how IVM can be improved for monitoring IVM conditions and for diagnosing oocyte quality.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3