Glycosylphosphatidylinositol-specific phospholipase D influences triglyceride-rich lipoprotein metabolism

Author:

Raikwar Nandita S.,Cho Won Kyoo,Bowen Rosario F.,Deeg Mark A.

Abstract

Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is a minor HDL-associated protein. Because many minor HDL-associated proteins exchange between different lipoprotein classes during the postprandial state and are also involved in triglyceride (TG) metabolism, we hypothesized that GPI-PLD may play a role in the metabolism of TG-rich lipoproteins. To test this hypothesis, we examined the distribution of GPI-PLD among lipoprotein classes during a fat tolerance test in C57BL/6 and LDL receptor-deficient (LDLR−/−) mice fed either a chow or high-fructose diet. In the fasting state in wild-type mice fed a chow diet, GPI-PLD was only present in HDL, whereas in LDLR−/−mice GPI-PLD was present in HDL and intermediate-density lipoproteins (IDL)/LDL. During the fat tolerance test, there was no change in total serum GPI-PLD levels in either model; however, a significant amount of GPI-PLD appeared in both VLDL (0.5–1% of total GPI-PLD) and IDL/LDL (5–10% of total GPI-PLD) in both models. The high-fructose diet increased both fasting and postprandial TG and serum GPI-PLD levels in both strains as well as the amount of GPI-PLD in VLDL. To determine whether GPI-PLD plays a direct role in TG metabolism, we increased liver GPI-PLD expression in C57BL/6 mice by adenovirus-mediated gene transfer, which resulted in a sevenfold increase in serum GPI-PLD levels. This change was associated with an increase in fasting (30%) and postprandial TG (50%) and a twofold reduction in TG-rich lipoprotein catabolism compared with saline or control adenovirus-treated mice. These studies demonstrate that GPI-PLD affects serum TG levels by altering catabolism of TG-rich lipoproteins.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3