The bradykinin-cGMP-PKG pathway augments insulin sensitivity via upregulation of MAPK phosphatase-5 and inhibition of JNK

Author:

Frigolet María E.12,Thomas Garry324,Beard Kristin324,Lu Huogen1,Liu Lijiang1,Fantus I. George3124

Affiliation:

1. Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada;

2. Banting and Best Diabetes Centre, Toronto, Ontario, Canada; and

3. Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada;

4. Department of Physiology, University of Toronto, Toronto, Ontario, Canada

Abstract

Bradykinin (BK) promotes insulin sensitivity and glucose uptake in adipocytes and other cell types. We demonstrated that in rat adipocytes BK enhances insulin-stimulated glucose transport via endothelial nitric oxide synthase, nitric oxide (NO) generation, and decreased activity of the mitogen-activated protein kinase (MAPK) JNK (c-Jun NH2-terminal kinase). In endothelial cells, NO increases soluble guanylate cyclase (sGC) activity, which, in turn, activates protein kinase G (PKG) by increasing cGMP levels. In this study, we investigated whether BK acts via the sGC-cGMP-PKG pathway to inhibit the negative effects of JNK on insulin signaling and glucose uptake in rat adipocytes. BK augmented cGMP concentrations. The BK-induced enhancement of insulin-stimulated glucose uptake was mimicked by the sGC activator YC-1 and a cell-permeable cGMP analog, CPT-cGMP, and inhibited by the sGC inhibitor ODQ and the PKG inhibitor KT 5823. Transfection of dominant-negative PKG reduced the BK augmentation of insulin-induced Akt phosphorylation. The activation of JNK and ERK1/2 by insulin was attenuated by BK, which was mediated by the sGC-cGMP-PKG pathway. Whereas insulin-stimulated phosphorylation of upstream activators of JNK and ERK, i.e., MKK4 and MEK1/2, was unaffected, BK augmented insulin-mediated induction of MKP-5 mRNA and protein levels. Furthermore, zaprinast, a phosphodiesterase inhibitor, enhanced cGMP and MKP-5 and prolonged the action of BK. These data indicate that BK enhances insulin action by inhibition of negative feedback by JNK and ERK via upregulation of MKP-5, mediated by the sGC-cGMP-PKG signaling pathway.

Funder

CIHR

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3