Glucose-induced release of nitric oxide from mouse pancreatic islets as detected with nitric oxide-selective glass microelectrodes

Author:

Nunemaker Craig S.,Buerk Donald G.,Zhang Min,Satin Leslie S.

Abstract

Nitric oxide (NO) is believed to play an important role in pancreatic islet physiology and pathophysiology. Research in this area has been hampered, however, by the use of indirect methods to measure islet NO. To investigate the role of NO in islet function, we positioned NO-sensitive, recessed-tip microelectrodes in close proximity to individual islets and monitored oxidation current to detect subnanomolar NO in the bath. NO release from islets consisted of a series of rapid bursts lasting several seconds and/or slow oscillations with a period of ∼100–300 s. Average baseline NO near the islets in 2.8 mM glucose was 524 ± 59 nM ( n = 12). Raising glucose from 2.8 to 11.1 mM augmented NO release by 429 ± 133 nM ( n = 12, P < 0.05), an effect blocked by the NO synthase inhibitor l-NAME ( n = 3). We also observed that glucose-stimulated increases in NO release were contemporaneous with changes in NAD(P)H and O2but occurred well before increases in calcium associated with glucose-stimulated insulin secretion. In summary, we demonstrate that NO release from islets is oscillatory and rapidly augmented by glucose, suggesting that NO release occurs early following an increase in glucose metabolism and may contribute to the stimulated insulin secretion triggered by suprathreshold glucose.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3