Chronic exposure to β-hydroxybutyrate impairs insulin action in primary cultures of adult cardiomyocytes

Author:

Tardif Annie1,Julien Nathalie1,Pelletier Amélie1,Thibault Gaétan2,Srivastava Ashok K.1,Chiasson Jean-Louis1,Coderre Lise1

Affiliation:

1. Department of Medicine, Research Center, Centre Hospitalier de l'Université de Montréal, University of Montreal, Montreal H2W 1T8; and

2. Department of Medicine, Clinical Research Institute of Montreal, University of Montreal, Montreal, Canada H2W 1R7

Abstract

Type 1 and type 2 diabetic patients often show elevated plasma ketone body concentrations. Because ketone bodies compete with other energetic substrates and reduce their utilization, they could participate in the development of insulin resistance in the heart. We have examined the effect of elevated levels of ketone bodies on insulin action in primary cultures of adult cardiomyocytes. Cardiomyocytes were cultured with the ketone body β-hydroxybutyrate (β-OHB) for 4 or 16 h, and insulin-stimulated glucose uptake was evaluated. Although short-term exposure to ketone bodies was not associated with any change in insulin action, our data demonstrated that preincubation with β-OHB for 16 h markedly reduced insulin-stimulated glucose uptake in cardiomyocytes. This effect is concentration dependent and persists for at least 6 h after the removal of β-OHB from the media. Ketone bodies also decreased the stimulatory effect of phorbol 12-myristate 13-acetate and pervanadate on glucose uptake. This diminution could not be explained by a change in either GLUT-1 or GLUT-4 protein content in cardiomyocytes. Chronic exposure to β-OHB was associated with impaired protein kinase B activation in response to insulin and pervanadate. These results indicate that prolonged exposure to ketone bodies altered insulin action in cardiomyocytes and suggest that this substrate could play a role in the development of insulin resistance in the heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3