Kinetic modeling of [18F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model

Author:

Bertoldo A.1,Peltoniemi P.23,Oikonen V.2,Knuuti J.2,Nuutila P.23,Cobelli C.1

Affiliation:

1. Department of Electronics and Informatics, University of Padova, Padua 35131, Italy; and

2. Turku PET Centre and

3. Department of Medicine, University of Turku, F-20520 Turku, Finland

Abstract

Various modeling strategies have been developed to convert regional [18F]fluorodeoxyglucose ([18F]FDG) concentration measured by positron emission tomography (PET) to a measurement of physiological parameters. However, all the proposed models have been developed and tested mostly for brain studies. The purpose of the present study is to select the most accurate model for describing [18F]FDG kinetics in human skeletal muscle. The database consists of basal and hyperinsulinemic-euglycemic studies performed in normal subjects. PET data were first analyzed by an input-output modeling technique (often called spectral analysis). These results provided guidelines for developing a compartmental model. A new model with four compartments and five rate constants (5K model) emerged as the best. By accounting for plasma and extracellular and intracellular kinetics, this model allows, for the first time, PET assessment of the individual steps of [18F]FDG kinetics in human skeletal muscle, from plasma to extracellular space to transmembrane transport into the cell to intracellular phosphorylation. Insulin is shown to affect transport and phosphorylation but not extracellular kinetics, with the transport step becoming the main site of control. The 5K model also allows definition of the domain of validity of the classic three-compartment three- or four-rate-constant models. These models are candidates for an investigative tool to quantitatively assess insulin control on individual metabolic steps in human muscle in normal and physiopathological states.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3