Effects of 4-h ischemia and 1-h reperfusion on rat muscle sarcoplasmic reticulum function

Author:

Tupling R.1,Green H.1,Senisterra G.2,Lepock J.2,McKee N.3

Affiliation:

1. Departments of Kinesiology and

2. Physics, University of Waterloo, Waterloo N2L 3G1; and

3. Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada

Abstract

To investigate the hypothesis that ischemia and reperfusion would impair sarcoplasmic reticulum (SR) Ca2+ regulation in skeletal muscle, Sprague-Dawley rats ( n = 20) weighing 290 ± 3.5 g were randomly assigned to either a control control (CC) group, in which only the effects of anesthetization were studied, or to a group in which the muscles in one hindlimb were made ischemic for 4 h and allowed to recover for 1 h (I). The nonischemic, contralateral muscles served as control (C). Measurements of Ca2+-ATPase properties in homogenates and SR vesicles, in mixed gastrocnemius and tibialis anterior muscles, indicated no differences between groups on maximal activity, the Hill coefficient, and Ca50, defined as the Ca2+concentration needed to elicit 50% of maximal activity. In homogenates, Ca2+ uptake was lower ( P < 0.05) by 20–25%, measured at 0.5 and 1.0 μM of free Ca2+ ([Ca2+]f) in C compared with CC. In SR vesicles, Ca2+ uptake was lower ( P < 0.05) by 30–38% in I compared with CC at [Ca2+]f between 0.5 and 1.5 μM. Silver nitrate induced Ca2+ release, assessed during both the initial, early rapid ( phase 1), and slower, prolonged late ( phase 2) phases, in homogenates and SR vesicles, indicated a higher ( P < 0.05) release only in phase 1in SR vesicles in I compared with CC. These results indicate that the alterations in SR Ca2+ regulation, previously observed after prolonged ischemia by our group, are reversed within 1 h of reperfusion. However, the lower Ca2+ uptake observed in long-term, nonischemic homogenates suggests that altered regulation may occur in the absence of ischemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3