Activation of mitogenic and antimitogenic pathways in cyclically stretched arterial smooth muscle

Author:

Standley Paul R.1,Stanley Melinda A.1,Senechal P.1

Affiliation:

1. Department of Physiology, Midwestern University, Glendale, Arizona 85308

Abstract

Biophysical forces regulate vascular smooth muscle cell (VSMC) physiology and evoke vascular remodeling. Two VSMC autocrine molecules, insulin-like growth factor I (IGF-I) and nitric oxide (NO), are implicated in remodeling attributable to VSMC hyperplasia. We investigated the role of in vitro cyclic stretch on rat VSMC IGF-I, NO, and cellular growth. Cyclic stretch (1 Hz at 120% resting length for 48 h) stimulated VSMC proliferation 2.5-fold vs. unstretched cells and was accompanied by a 1.8-fold increase in VSMC IGF-I secretion. Despite activation of this proliferative pathway, cyclic stretch induced inducible (i) nitric oxide synthase (NOS) expression and a twofold increase in NO secretion, a molecule with documented antiproliferative effects. Cytokine treatment enhanced iNOS expression and NO secretion while inhibiting vascular growth by ≈50% in static cells. Cytokine treatment of stretched VSMC enhanced NO secretion 2.5-fold while inhibiting growth by ≈80%. Exogenous IGF-I increased NOS activity 1.5-fold and NO secretion 8.5-fold in static cells. In turn, iNOS inhibition increased IGF-I secretion 1.6-fold and enhanced VSMC growth 1.6-fold in stretched cells. An NO donor (sodium nitroprusside) similarly inhibited VSMC proliferation in static (24%) and stretched (50%) VSMC while also inhibiting IGF-I secretion from stretched cells by ≈35%. Thus cyclic stretch stimulates mitogenic (IGF-I) and antimitogenic (NO) pathways in VSMC. These two molecules regulate each other's secretory rates, providing tight regulation of VSMC proliferation. These data may have profound implications in understanding vascular growth alterations in vascular injury and hypertension.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3